\(\int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [476]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 94 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d} \]

[Out]

3*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(3/2)/d-cos(d*x+c)/a/d/(a+a*sin(d*x+c))^(1/2)-cot(d*x+c
)*(a+a*sin(d*x+c))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {2959, 2852, 212, 3123, 21, 2842} \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{a^2 d}-\frac {\cos (c+d x)}{a d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[(Cos[c + d*x]^2*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(3*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(a^(3/2)*d) - Cos[c + d*x]/(a*d*Sqrt[a + a*Sin[c
+ d*x]]) - (Cot[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(a^2*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2959

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[-2/(a*b*d), Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 2), x], x] + Dist[1/a^2
, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}
, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \left (1+\sin ^2(c+d x)\right ) \, dx}{a^2}-\frac {2 \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx}{a^2} \\ & = -\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d}+\frac {\int \csc (c+d x) \left (\frac {a}{2}+\frac {1}{2} a \sin (c+d x)\right ) \sqrt {a+a \sin (c+d x)} \, dx}{a^3}+\frac {4 \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a d} \\ & = \frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d}+\frac {\int \csc (c+d x) (a+a \sin (c+d x))^{3/2} \, dx}{2 a^3} \\ & = \frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d}+\frac {\int \frac {\csc (c+d x) \left (\frac {a^2}{2}+\frac {1}{2} a^2 \sin (c+d x)\right )}{\sqrt {a+a \sin (c+d x)}} \, dx}{a^3} \\ & = \frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d}+\frac {\int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx}{2 a^2} \\ & = \frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d}-\frac {\text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a d} \\ & = \frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(220\) vs. \(2(94)=188\).

Time = 1.13 (sec) , antiderivative size = 220, normalized size of antiderivative = 2.34 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (2-8 \cos \left (\frac {1}{2} (c+d x)\right )-\cot \left (\frac {1}{4} (c+d x)\right )+6 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-6 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {2 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )}-\frac {2 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )}+8 \sin \left (\frac {1}{2} (c+d x)\right )-\tan \left (\frac {1}{4} (c+d x)\right )\right )}{4 d (a (1+\sin (c+d x)))^{3/2}} \]

[In]

Integrate[(Cos[c + d*x]^2*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(2 - 8*Cos[(c + d*x)/2] - Cot[(c + d*x)/4] + 6*Log[1 + Cos[(c + d*x)/
2] - Sin[(c + d*x)/2]] - 6*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (2*Sin[(c + d*x)/4])/(Cos[(c + d*x)/
4] - Sin[(c + d*x)/4]) - (2*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4]) + 8*Sin[(c + d*x)/2] - Tan
[(c + d*x)/4]))/(4*d*(a*(1 + Sin[c + d*x]))^(3/2))

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.35

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (2 \sqrt {a -a \sin \left (d x +c \right )}\, \sin \left (d x +c \right ) \sqrt {a}-3 \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right ) \sin \left (d x +c \right ) a +\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right )}{a^{\frac {5}{2}} \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(127\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/a^(5/2)*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(2*(a-a*sin(d*x+c))^(1/2)*sin(d*x+c)*a^(1/2)-3*arctanh((a-
a*sin(d*x+c))^(1/2)/a^(1/2))*sin(d*x+c)*a+(a-a*sin(d*x+c))^(1/2)*a^(1/2))/sin(d*x+c)/cos(d*x+c)/(a+a*sin(d*x+c
))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 291 vs. \(2 (84) = 168\).

Time = 0.29 (sec) , antiderivative size = 291, normalized size of antiderivative = 3.10 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {3 \, {\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + {\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) - 1\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d - {\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*(3*(cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)
^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a
) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x +
 c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*(2*cos(d*x + c)^2 + (2*cos(d*x + c) + 1)*si
n(d*x + c) + cos(d*x + c) - 1)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d*x + c)^2 - a^2*d - (a^2*d*cos(d*x + c) +
 a^2*d)*sin(d*x + c))

Sympy [F]

\[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**2/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)**4*csc(c + d*x)**2/(a*(sin(c + d*x) + 1))**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.76 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\sqrt {2} \sqrt {a} {\left (\frac {3 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {8 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{4 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4*sqrt(2)*sqrt(a)*(3*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1
/4*pi + 1/2*d*x + 1/2*c)))/(a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) + 8*sin(-1/4*pi + 1/2*d*x + 1/2*c)/(a^2*s
gn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)/((2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 -
1)*a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{{\sin \left (c+d\,x\right )}^2\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(c + d*x)^4/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(3/2)),x)

[Out]

int(cos(c + d*x)^4/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(3/2)), x)